Short- and medium-range order in Zr$_{80}$Pt$_{20}$ liquids

1Department of Physics, Center for Materials Innovation, Washington University, St. Louis, Missouri 63130, USA
2ETH Zurich, Department of Materials, Zurich, Switzerland
3Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), DE-51170 Köln, Germany
4Institut für Festkörperphysik, Ruhr-Universität Bochum, DE-44780 Bochum, Germany
5Ames Laboratory and Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, USA
6Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA

(Received 14 September 2010; revised manuscript received 17 March 2011; published 18 May 2011)

The atomic structures in equilibrium and supercooled liquids of Zr$_{80}$Pt$_{20}$ were determined as a function of temperature by in situ high-energy synchrotron diffraction studies of the levitated liquids (containerless processing) using the beamline electrostatic levitation (BESL) technique. The presence of a pronounced pre-peak at $q \sim 1.7 \text{ Å}^{-1}$ in the static structure factor indicates medium-range order (MRO) in the liquid. The position and intensity of the pre-peak remain constant with cooling, indicating that the MRO is already present in the liquid above its melting temperature. An analysis of the liquid atomic structures obtained using the Reverse Monte Carlo method utilizing both the structure factor $S(q)$ from x-ray diffraction experiments and the partial pair-correlation functions from ab initio molecular dynamics simulations show that the pre-peak arises from a Pt-Pt correlation that can be identified with icosahedral short-range order around the Pt atoms. The local atomic ordering is dominated by icosahedral-like structures, raising the nucleation barrier between the liquid and these phases, thus assisting glass formation.

DOI: 10.1103/PhysRevB.83.184109 PACS number(s): 61.25.Mv

I. INTRODUCTION

It is well known that Zr-based metallic glasses tend to have a high glass-forming ability (GFA), and Some are bulk metallic glasses (BMGs), i.e., glasses with a critical casting thickness of 1 mm or greater. Icosahedral quasicrystalline phases (q_{phases}) are frequently found in crystallized Zr-based BMGs, suggesting that these amorphous structures have a high degree of icosahedral short-range order (ISRO). This is supported by recent high-energy synchrotron x-ray diffraction studies of Zr- and Ti-based liquids and glasses, which have linked supercooling and the glass transition to an increase in icosahedral and icosahedral-like local order. More quantitative structural studies of BMGs, however, are hindered by their chemical complexity, often containing four or more components. Studies of simpler Zr-based binary alloys have been more successful, providing important insights into the role of local atomic structures in dictating the transformation pathways and supercooling potential for a liquid.

It has been reported that Zr$_{80}$Pt$_{20}$ can be quenched into the amorphous state by melt spinning and that the x-ray diffraction patterns of the glassy ribbons show a pre-peak near 1.7 Å$^{-1}$. Studies of Zr$_{100-x}$Pt$_{x}$ ($73 \leq x \leq 77$) glasses show that the intensity of the pre-peak increases with increasing Pt concentration, suggesting that it arises from Pt-Pt correlations. Pre-peaks, indicating some degree of medium-range order (MRO), have been observed previously in experimental and theoretical studies of metallic glasses and liquids. However, reports of MRO in metal-metal liquids are rare, and Al-based binary and ternary alloys. In this paper, we present the results from in situ high-energy synchrotron x-ray diffraction studies of equilibrium and supercooled Zr$_{80}$Pt$_{20}$ liquids (eutectic composition) using the beamline electrostatic levitation (BESL) technique. These data show that the MRO is very stable, with the pre-peak present from 550 °C above the liquidus temperature T_l in the equilibrium liquids to 200 °C below T_l in the supercooled liquid, the lowest temperature that could be studied before crystallization. Consistent with previous structural studies of melt-spun ribbons of the same composition, the MRO observed in the liquid is dominated by a Pt-Pt correlation. The results presented here show that the MRO is already established well above the melting temperature and remains relatively unchanged over the 750 °C temperature range studied. The Honeycutt-Anderson (HA) and Voronoi polyhedra (VI) analyses of the atomic structures obtained by Reverse Monte Carlo (RMC) fits to the measured scattering data in a more limited temperature range show that the liquid is dominated by icosahedral and icosahedral-like local order, which increases modestly with supercooling. Further, the Voronoi polyhedra analysis shows that the dominant Pt- and Zr-centered clusters in the liquid are similar to those reported in the amorphous alloy, and that the MRO established in the high-temperature liquid is dominated by a Pt-Pt correlation.

II. EXPERIMENT

Master ingots (~ 1.0 g) of Zr$_{80}$Pt$_{20}$ were prepared by arc-melting high-purity elemental Zr [99.95% (including nominal Hf 3%)] and Pt (99.995%) on a water-cooled copper hearth in a high-purity Ar (99.999%) atmosphere. These ingots were crushed and small spherical samples (~ 2.5 mm) were prepared for supercooling and in situ liquid structure studies at the Advanced Photon Source (Station 6-ID-D in the MUCAT Sector), using the Washington University Beamline...
Electrostatic Levitator (WU-BESL). WU-BESL is a recently constructed facility that is optimized for diffraction studies of levitated (containerless) liquids under high vacuum; the design is a modified version of the prototype Electrostatic Levitation (ESL) facilities at the NASA Marshall space flight center and the DLR (Cologne, Germany).

Two optical pyrometers were used to measure the sample temperature over two ranges, 160–800 °C and 600–2300 °C, with a relative accuracy of better than 1% over the entire temperature range. To obtain maximum supercooling, the levitated samples were heated in a high-vacuum environment (∼10⁻⁷ Torr) using a fiber coupled diode laser (980-nm, 50-W continuous maximum power output) to 300 °C above the liquids temperature T_l and subsequently free-cooled (radiation cooling with laser power off). Crystallization from the metastable liquid, marked by a sharp rise in temperature (recalescence), limited the lowest temperature of x-ray diffraction studies to 250 °C below T_l. By controlling the laser power, it was also possible to make isothermal measurements at different temperatures. The mass loss during processing was negligible (<0.2%). Simultaneous noncontact density measurements were made using the shadow method with a Pixelink PL-B742U CCD camera and a 450-nm backlight. Video data were taken at a frame rate of 15 fps averaging of up to 300 frames at each isothermal step. The details of the machine vision volume measurement algorithm are described elsewhere. The relative precision of the density data was ∼1.5% over the temperature range studied with an absolute accuracy of 3%.

High-energy ($E = 129$ keV, $\lambda = 0.0969$ Å) diffraction studies of the liquids were made in a transmission geometry to high q (15 Å⁻¹) using a GE Revolution 41-RT amorphous Si flat-panel x-ray detector at a sampling rate of 1 Hz. Structure factors $S(q)$ were derived from the scattering data by first applying an appropriate gain map, masking bad pixels, and averaging images, subtracting the appropriate dark current, and then correcting for oblique incidence, absorption, multiple scattering, fluorescence, and Compton scattering contributions by using Fit2d and PDFGetX analysis packages. Liquid diffraction patterns were obtained as a function of temperature by taking 20 second exposures per temperature step. The static structure factor was calculated using

$$S(q) = \frac{I(q) - \sum_i a_i f_i(q)}{\sum_i a_i f_i(q)}^2 + 1,$$

where $I(q)$ is the measured diffraction intensity, a_i is the atomic fraction of each element, and $f_i(q)$ is the q-dependent atomic form factor for each species. The sums are over all species and an isotropic and statistically homogeneous atomic distribution is assumed. This approximation is well justified in metallic liquids.

Atomic structures were obtained by RMC fits to the measured x-ray static structure factors, $S(q)$, while constraining the simulation with partial pair-distribution functions obtained from ab initio molecular dynamics (MD) simulations using the Vienna ab initio simulation package (VASP). The system consisted of 100 atoms (80 atoms of Zr and 20 atoms of Pt) in a cubic box with periodic boundary conditions, described more fully by Wang et al. The MD simulations provide partial pair-correlation functions (PPCFs) out to ∼6 Å when none are experimentally available. The description and details of the constrained RMC (CRMC) technique can be found elsewhere. For this study, random starting configurations of 5000 atoms with the appropriate stoichiometric composition were used, confined to a cubic box with dimensions appropriate to the measured density. The CRMC partial minimum distances were set nominally at 2.00 Å for all atomic pairs, consistent with the measured total radial distribution function $g(r)$ and the MD partial pair-correlation functions. The $g(r)$ data demonstrated that this minimum distance changed little relative to the position of the main peak over the temperature range studied. The SRO of the atomic structures obtained from the CRMC process was evaluated using both the Honeycutt and Andersen index and Voronoi tessellation methods. A nearest-neighbor cutoff distance of nominally 4.08 Å was used for these studies, again determined from the total $g(r)$.

III. RESULTS AND DISCUSSIONS

With cooling, the levitated liquid drops show a single recalescence near 978 °C (197 °C below the liquidus temperature). The diffraction data following that recalescence can be indexed to a phase mixture of Zr₅Pt₃ (hexagonal) and β-Zr, consistent with the equilibrium phase diagram for the eutectic liquid. The measured liquid x-ray static structure factors determined from 1607 °C, 432 °C above the liquidus temperature ($T = 1175$ °C), down to the maximum supercooling of 197 °C ($T = 978$ °C) are shown in Fig. 1. The $S(q)$ oscillates well around unity over the entire range of q [Fig. 1(a)], indicating the high quality of the experimental data and that the appropriate correction was made for absorption, background, and Compton scattering. The primary peak [Fig. 1(b)] sharpens, increases in magnitude, and shifts to lower scattering angle, reflecting an increasing density and a more ordered liquid with decreasing temperature. The shoulder on the second peak [Fig. 1(c)] becomes more pronounced with supercooling, which is frequently argued to indicate an increase in icosahedral and icosahedral-like order. A pre-peak is observed at ∼1.7 Å⁻¹ for all temperatures [Fig. 1(d)]. The small variation of the pre-peak with cooling indicates that the atomic bonds associated with the MRO are strong compared to thermal energy. This pre-peak is of interest because it does not often emerge in x-ray scattering studies of liquids. To investigate atomic structures in the liquids and, in particular, to gain insight into the chemical ordering, constrained Reverse Monte Carlo fits were performed on the $S(q)$ data at several temperatures.

Convergence of the CRMC simulations from different starting configurations was explored, taking both ordered (cubic symmetry) and random initial configurations at each temperature. No statistically relevant differences emerged in the final HA and VI distributions nor in the partial pair-correlation functions obtained from these two initial configurations. The final configurations simulated from the random initial configurations are reported here. The shortest atom distances were determined from the experimentally measured total pair-correlation function $g(r)$. The number
density trends linearly with temperature as
\[
\rho(T) = -1.564 \times 10^{-6} \frac{T}{\text{C} \text{Å}^3} + 0.047 \frac{1}{\text{Å}}.
\]
(2)

Atomic models that are consistent with both the experimental scattering data and the MD simulations were obtained. The quality of the fit is shown in Fig. 2 for the \(S(q)\) data taken at 978 °C, 1090 °C, 1217 °C, and 1345 °C. In all cases, a good fit was obtained at all scattering \(q\). However, the intensities of the CRMC fit for the pre-peak and the primary peak are slightly higher than the experimental data, while the second peak, including the developing shoulder, was fit extremely well. The location of the pre-peak was also reproduced well. The discrepancy between the fit and experimental data for the pre-peak worsens slightly as the temperature is reduced, indicating that a quantitative analysis of the trends in ordering inherent to the second nearest neighbors is less reliable than for the nearest neighbors.

Since RMC simulations provide average structures that fit the experimental data, poorly constrained RMC fits can produce PPCFs with nonphysical peak positions. Lacking additional scattering data, MD partial pair-correlation functions are used to force the local atomic order to be consistent with both the experimental \(S(q)\) and the results of the MD simulation. The MD-derived partial pair-correlation functions provide realistic chemical interactions, at least to the first few shells. MD data are often criticized for their small simulation size and short times. However, for liquid structure studies, where atomic mobility is high and typically atomic order does not extend beyond next-nearest neighbors, the MD results are expected to be accurate.47 In Fig. 3, we show the correspondence between the MD simulation PPCFs and the CRMC PPCFs at one temperature, 1345 °C. The CRMC PPCFs agree well with those obtained from the MD simulation. The small peak that is observed around 2.0 Å in all of the partial pair-correlation functions is nonphysical and appears to be a simulation artifact most likely due to a small difference between the number density for the experimental data and the simulations, and the finite resolution of the experimental data. A similar level of agreement is observed at all temperatures (not shown). With the constraints, the primary peak of the Zr-Pt PPCF [Fig. 3(b)] is near 2.80 Å. It grows slightly with decreasing temperature, but does not sharpen or shift significantly. The location of the nearest-neighbor peak is slightly smaller than would be expected from atomic-size considerations alone, but is reasonable given the large negative heat of mixing between Zr and Pt (\(~100\) kJ/mol). The primary peak in the Zr-Zr partial \(g(r)\) is approximately 3.12 Å, consistent with atomic-size considerations. The peak sharpens and moves to lower \(r\) with decreasing temperature. The primary peak in the

FIG. 1. (Color online) Static structure factor \(S(q)\) for (a) liquid \(\text{Zr}_{80}\text{Pt}_{20}\) at 1607 °C, 1474 °C, 1345 °C, 1217 °C, 1090 °C, and 978 °C. The insets show the evolution of \(S(q)\) with decreasing temperature for (b) the primary peak, (c) the second peak, and (d) the pre-peak (indicated with an arrow in the total structure factor).

FIG. 2. (Color online) Experimental \(S(q)\) (solid lines) and the corresponding CRMC fit (dashed lines) for liquid \(\text{Zr}_{80}\text{Pt}_{20}\) at 1345 °C, 1217 °C, 1090 °C, and 978 °C.
FIG. 3. (Color online) (a) Structure factor $S(q)$ of Zr$_{80}$Pt$_{20}$ liquid at 1345 °C with the constrained RMC fit. Partial pair-correlation functions $g_{i-j}(r)$ from MD and CRMC simulations for (b) Zr-Pt, (c) Zr-Zr, and (d) Pt-Pt.

Pt-Pt PPCF is near 2.95 Å. With decreasing temperature, the next-nearest neighbors [second peak in $g(r)$] split to form peaks at 4.50 and 5.50 Å. Interestingly, the intensity of the first peak decreases with decreasing temperature, while the second peak increases; the intensity of the third peak remains relatively unchanged. All peak positions in the Pt-Pt pair-correlation function remain unchanged over the temperature range studied.

The CRMC code assumes the Faber-Ziman formalism for isotropic materials to construct the total pair correlation $g(r)$ and structure factor $S(q)$ from the experimental data. The partial pair correlations $g_{i-j}(r)$ are calculated directly from the final atomic configurations

$$g_{i-j}(r) = \rho_{ij}^{-2} \left(\sum_i \sum_{j \neq k} \delta(r_i) \delta(r_j - r_i) \right),$$

where ρ_{ij} is the partial density

$$\rho_{ij} = \rho_0 \sqrt{a_i a_j},$$

ρ_0 is the average atomic density, and a_i and a_j are the atomic concentrations of the two species in the liquid. The partial structure factors $S_{i-j}(q)$ and the partial pair-correlation functions $g_{i-j}(r)$ are related by a Fourier transform

$$S_{i-j}(q) = 1 + 4\pi \rho_{ij} \int [g_{i-j}(r) - 1] \sin q r r^2 dr,$$

$$g_{i-j}(r) = 1 + \frac{2}{4\pi \rho_{ij}} \int [S_{i-j}(q) - 1] \sin q r r^2 dq.$$

The total $S(q)$ is obtained from the three partial structure factors, the x-ray atomic form factors $f_i(q)$, and their atomic concentrations

$$S(q) = \sum_i \sum_j a_i a_j f_i(q) f_j(q) [S_{i-j}(q) - 1]$$

$$= S_{Zr-Zr}(q) + S_{Zr-Pt}(q) + S_{Pt-Pt}(q).$$

Here, $S_{i-j}(q)$ represent the properly weighted contributions from the three species-species contributions to the overall structure factor; they are shown in Fig. 4 for all temperatures. Consistent with previous reports for the glass, the $S_{i-j}(q)$ data indicate that the pre-peak in the $S(q)$ data originates primarily from the Pt-Pt correlation.

As noted earlier, the total structure factor [Fig. 4(a)] shows a developing shoulder on the high-q side of the second peak, which, as shown in Fig. 4(c), is dominated by changes in Zr-Zr correlations. The second peak in the Zr-Pt partial structure factor [Fig. 4(b)] is symmetric and does not appear to contribute significantly to the shoulder in the total $S(q)$. A strong asymmetry is observed in the Zr-Pt partial structure, broadening on the high-q side, indicating a relatively large distribution in the nearest-neighbor bonding.

The results of an HA index analysis of the structures obtained from the CRMC fits to the data are shown in Fig. 5. All liquid structures are dominated by icosahedral (1551) and distorted icosahedral (1431 + 1541) order. While the amount of distorted icosahedral order decreases slightly with decreasing temperature, the amount of icosahedral order increases, causing the overall icosahedral-like order to slightly...
FIG. 4. $S(q)$ produced from CRMC simulations at all temperatures. (a) Total structure factor; (b) Zr-Pt partial structure factor, showing an asymmetric first peak and no developing shoulder in the second peak; (c) Zr-Zr partial structure factor showing a developing shoulder in the second peak; and (d) Pt-Pt partial structure factor displaying a prominent pre-peak at all temperatures.

FIG. 5. (Color online) The prominent HA indices for the RMC liquid structure as a function of temperature.
and the average coordination number around the Zr atoms changes from 12.75 to 13.05 over the temperature range, becoming largest at the lowest temperature. It should be noted that a Voronoi analysis of the local structure of the primary crystallizing phase β-Zr (bcc) yields only (0,6,0,8) (truncated octahedrons) around the Zr atoms. This index is not a dominant feature in the RMC liquid structures.

While the HA analysis indicates that icosahedral and distorted icosahedral order are dominant in the liquid structure, the fraction of (0,0,12,0) Voronoi polyhedra (icosahedral clusters) is low. This is due partially to the failure of the HA analysis to identify complete clusters. Additionally, Hao et al. 52 point out that distinct topological classes can be very closely related by simple distortions or coordination number increases. It can be shown that (0,2,8,2), (0,1,10,2), (0,4,4,4), and (0,2,8,4), which are present in significant concentration, are closely related topologically to (0,0,12,0). The Voronoi analysis, then, also demonstrates that the local structures of the atomic ensemble obtained by RMC have an icosahedral or distorted icosahedral character. The icosahedral order likely continues to increase during the quench, supported by the observation 52 that the quasicrystalline phase appears first upon devitrification of amorphous ribbons produced by rapid quenching, or in partially crystalline ribbons produced by slower quenching.

Based on high-energy x-ray scattering studies 15,40,51 and molecular dynamics simulations 40 of amorphous Zr80Pt20 and Zr73Pt27, the pre-peak in the structure factor has been attributed to Pt-Pt correlations. Further, Saida et al. 51 and Wang et al. 40 found that the Pt-centered (0,2,8,1) cluster, which is a structural unit of the hexagonal primary crystallizing phase Zr5Pt3 and which we find is a dominant unit in the liquid, is also dominant in the glass. Based on the CRMC simulation of the Zr80Pt20 liquid, the most dominant Pt-centered clusters [Fig. 6(b)] are the 13 coordinated ((0,3,6,4)), 12 coordinated ((0,2,8,2), (0,3,6,3), (0,4,4,4)), and 11 coordinated ((0,2,8,1), (0,4,4,3), (0,3,6,2)) polyhedra. The distribution of Pt-centered polyhedra shows no trend that exceeds the statistical noise, and the increase in the (0,2,8,2) index at 1090 °C is likely not significant. The average coordination number around the Pt atoms remains constant, near 12.2, over the entire temperature range.

The persistence of the Pt-centered (0,2,8,1) polyhedra in the liquid and glassy Zr-Pt, and its existence in the Zr5Pt3 structure, demonstrates the stability of this cluster. The large supercooling that is observed and glass formation indicate a significant nucleation barrier for Zr5Pt3. The fact that the (0,2,8,1) polyhedra are observed in all phases seems to be inconsistent with this, although it should be emphasized that they are only one of the dominant clusters in the liquid [Fig. 6(b)]. Glass formation and crystallization may be impacted by the chemical and other topological SRO and MRO in Zr-Pt liquids. Zr80Pt20 is known to form the i-phase directly from the melt, while Zr70Pd30 does not, 12 suggesting that, in this system, the liquid that is richer in Zr contains more icosahedral order. Previous studies of Zr-Pt glasses support this, showing that the devitrification pathway changes with Zr concentration, going from glass ⇒ Zr5Pt3 at high Pt concentration to glass ⇒ i-phase ⇒ Zr5Pt3 with increasing Zr 53 and suggesting that icosahedral clusters are the source of the MRO observed. However, the recent observation of a pre-peak in a Zr-Ni liquid 23 from neutron scattering data, which is reported not to have dominant icosahedral short-range order, suggests that icosahedral order is not always the source of MRO. Instead, a pre-peak is a manifestation of chemical and topological ordering originating from the most common polyhedral cluster in each system, icosahedral or otherwise.

This is further supported by the reports of pre-peaks in marginal Al-TM-RE glass-forming alloys 26,54 and alkali-metal alloys with Pb. 55 The pre-peak in a given system is enhanced.
(or reduced) depending on the atomic scattering factors and alloy composition; x-ray diffraction studies are insufficient to resolve this order in all cases.

IV. CONCLUSION

In summary, x-ray diffraction studies have revealed the existence of a pre-peak at $q \sim 1.7 \text{ Å}^{-1}$ in the static structure factor of Zr$_{50}$Pt$_{20}$ equilibrium and supercooled liquids, indicating medium-range order in the liquid. An analysis of atomic structures obtained from an MD simulation, to the scattering data indicates that the pre-peak is due to a Pt-Pt correlation among Zr-centered clusters having icosahedral and distorted-icosahedral symmetry. The icosahedral order in the liquid likely increases the crystal nucleation barrier, contributing to the ability to supercool and aiding glass formation in these alloys.

ACKNOWLEDGMENTS

We acknowledge the valuable assistance of D. Robinson, A. Logan, A. Lyons, J. Mai, and C. Tackes. The research was partially supported by the National Science Foundation under Grants No. DMR-06-06065, No. DMR-08-56199, and No. DMR-0815715, and NASA under Grants No. NNX07AK27G and No. NNX09AJ19H. The synchrotron measurements were made on the MUCAT beamline at the Advanced Photon Source. Use of the Advanced Photon Source is supported by the US Department of Energy (DOE), Basic Energy Sciences, Office of Science, under Contract No. DE-AC02-06CH11357.

33A. P. Hammersley, ESRF Report No. ESRF97HA02T (unpublished).
36G. Kresse (unpublished).