Left-handed graphene

Yu. Bliokh and V. Freilikher

Israel
Graphene is a honeycomb lattice of carbon atoms made of two interpenetrating triangular sub lattices.
this particular dispersion mimics the physics of QED for massless Dirac relativistic fermions moving with $v_F = c/300$
\[\psi = (\psi_A, \psi_B)^T \]

\[i\hbar \frac{\partial \psi}{\partial t} = (\hat{H}_0 + V)\psi \]

\[\hat{H}_0 = v_F \vec{\sigma} \vec{p}, \quad \vec{\sigma} = (\sigma_1, \sigma_2), \quad \vec{p} = -i\hbar \vec{\nabla} \]

Dirac equation for massless relativistic particles

Maxwell equations for electromagnetic waves

\[\frac{\partial \vec{E}}{\partial t} = \frac{c}{\varepsilon} \text{curl}\vec{H} \]

\[\frac{\partial \vec{H}}{\partial t} = -\frac{c}{\mu} \text{curl}\vec{E} \]
\(V = V(x) \)
\(n(x) = \sqrt{\varepsilon \mu} \)
\(Z(x) = \sqrt{\varepsilon / \mu} \)

\[E = E_y - iE_x \]
\[H = ZH_z \]

\[\psi_{A,B} \sim \exp \left(-i \frac{W}{\hbar} t + ik_y y \right) \]

\[E, H \sim \exp(-i \omega t + ik_y y) \]

\[\psi_A = - \frac{iv_F \hbar}{E - V} \left(\frac{d\psi_B}{dx} + k_y \psi_B \right) \]
\[\psi_B = - \frac{iv_F \hbar}{E - V} \left(\frac{d\psi_A}{dx} - k_y \psi_A \right) \]

\[H = - \frac{i}{kn} \left(\frac{dE}{dx} + k_y E \right) \]
\[E = - \frac{i}{kn} \left(\frac{dH}{dx} - k_y H \right) \]
Quasiparticles with the energy \(W \) in the graphene sheet subjected to the electrostatic potential \(V(x) \).

Electromagnetic waves with the frequency \(\omega \) in the dielectric with the refractive index

\[
n(x) = \frac{c(W - V(x))}{\omega \hbar v_F}
\]
$$Z^{(1)} = Z^{(2)}$$

$$H_z^{(1)} = H_z^{(2)}, \quad E_y^{(1)} = E_y^{(2)}$$

$$\psi_A^{(1)} \left/ \psi_A^{(2)} \right. = 1$$
$$\psi_B^{(1)} \left/ \psi_B^{(2)} \right. = 1$$

$$\frac{H^{(1)}}{H^{(2)}} = 1$$
$$\frac{E^{(1)}}{E^{(2)}} = 1$$

$$\frac{E^{(1)}}{E^{(2)}} = \frac{Z^{(2)}}{Z^{(1)}} \left(\frac{n^{(1)}}{n^{(2)}} \frac{1}{H^{(2)}} \frac{dH^{(2)}}{dx} - k_y \right)$$

$$\frac{dH^{(2)}}{dx} = -k_y$$

$$k_y = 0$$
\[V^{(1)} = V^{(2)} \]

\[W \]

\[p-p, n-n, p-n \] junctions

\[n^{(1)} = \frac{c}{\omega} \frac{W - V^{(1)}}{\hbar v_F} \]

\[n^{(2)} = \frac{c}{\omega} \frac{W - V^{(2)}}{\hbar v_F} \]

\[\omega \]

\[Z^{(1)} = Z^{(2)} \]
V. Cheianov, V. Fal’ko, B. Altshuler,
Science, 2007
Klein paradox

\[Z^{(1)} = Z^{(2)} = Z^{(3)} \]

\[R_{12} = R_{23} = 0 \]

matching microwave elements

quantum field theory: ...particle - antiparticle pairs in the potential
Randomly layered graphene

no backscattering in 1-D disordered systems

all states are delocalized, no matter

how strong the disorder is!!!

no localization in 1-d random graphene superlattice?

\[R_{i,i+1}(\theta = 0) = 0 \]
time-reversal symmetry?
Graphene - metamaterials analogy can be exploited for mutual benefits

\[V^{(1)} \quad V^{(2)} \]

\[W \quad A^{(1)} \quad A^{(2)} \]

Crossed magnetic and electric fields applied to a graphene sheet can form a unidirectional conducting channel whose properties are easily tunable by the voltage applied across the strip. The eigenmode of this channel is a one-way propagating wave. This unique property prohibit backscattering and therefore makes the mode resistant to the scattering by impurities.

PHYSICAL REVIEW B 81, p. 075410, 2010

REVIEWS OF MODERN PHYSICS 81, p. 109 (2009)
END