Quantum Walks and Phase Transitions in Quadratic Nonlinear Waveguide Arrays

Andrey A. Sukhorukov
joint work with
Alexander S. Solinsev, Dragomir N. Neshev, Yuri S. Kivshar
Nonlinear Physics Centre, Australian National University

Frank Setzpfandt, Roland Schiek, Thomas Pertsch
Friedrich-Schiller-University Jena, Germany

Outline

• Waveguide arrays in material with quadratic nonlinearity
• Second-harmonic generation: Phase transition through parametric interactions; theory and experiment
• Spontaneous parametric down-conversion: Combined photon-pair generation and quantum walks in waveguide arrays
Optical waveguide arrays

- Light tunnels between waveguides
- E_n – amplitude at waveguide number n
- C – coupling coefficient

$$i \frac{dE_n}{dz} + C [E_{n-1} + E_{n+1}] = 0$$

Parametric nonlinear interactions

- Periodically poled waveguides in Lithium Niobate
- Linear coupling between waveguides
- Nonlinear coupling between FW and SH through quadratic nonlinearity

$$idA_n/dz + c_{FW}(A_{n+1} + A_{n-1}) + A_n^2 B_n = 0$$

$$idB_n/dz + c_{SH}(B_{n+1} + B_{n-1}) - \Delta \beta B_n + A_n^2 = 0$$
Localization in quadratic layered structures

PHYSICAL REVIEW E, VOLUME 63, 016615

Parametric localized modes in quadratic nonlinear photonic structures

Andrey A. Sukhorukov,1 Yuri S. Kivshar,1 Ole Bang,1,2 and Costas M. Soukoulis3
1Optical Sciences Centre, Australian National University, Canberra ACT 0200, Australia
2Department of Mathematical Modelling, Technical University of Denmark, DK-2800 Lyngby, Denmark
3Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011
(Received 15 May 2000; published 27 December 2000)

We analyze two-color spatially localized nonlinear modes formed by parametrically coupled fundamental and second-harmonic fields excited at quadratic (Or $\chi^{(2)}$) nonlinear interfaces embedded in a linear layered structure—a quadratic nonlinear photonic crystal. For a periodic lattice of nonlinear interfaces, we derive an effective discrete model for the amplitudes of the fundamental and second-harmonic waves at the interfaces (the so-called discrete $\chi^{(1)}$ equations) and find, numerically and analytically, the spatially localized solutions—discrete gap solitons. For a single nonlinear interface in a linear superlattice, we study the properties of two-color localized modes, and describe both similarities to and differences from quadratic solitons in homogeneous media.

Stationary (soliton) solutions

\begin{align*}
A_i (z) &= A_i (0) \exp[\beta z] \\
B_i (z) &= B_i (0) \exp[2\beta z]
\end{align*}

Small propagation constant β

\begin{align*}
&\rightarrow \text{wide FW driving „force“} \\
&\text{controls SH} \\
&\rightarrow \text{FW and SH are in phase} \\
&\rightarrow \text{no staggered SH}
\end{align*}

Large propagation constant

\begin{align*}
&\rightarrow \text{narrow FW driving} \\
&\rightarrow \text{FW and SH are out of phase} \\
&\rightarrow \text{staggered SH}
\end{align*}

\begin{align*}
\beta A_i + c_{uu} (A_i A_{i+1}) + \gamma A_i^2 B_i &= 0 \\
-2\beta B_i + c_{uu} (B_i B_{i-1}) - \Delta \beta^2 + \gamma B_i^2 &= 0
\end{align*}

First theory: Sukhorukov, Kivshar, Bang, Soukoulis, PRE 63, 016615 (2001)

Experiment: Setzpfandt, Sukhorukov, Neshev, Schiek, Kivshar, Pertsch, PRL 105, 233905 (2010)
Experimental results

- Mismatch $\Delta \beta$ controlled by FW wavelength
- Spectral peak around π in spatial Fourier domain — key feature of staggered phase profile

101 waveguides
15 μm period
71 mm long
1550 nm laser
5.2 ps pulses

Experiment: Setzpfandt, Sukhorukov, Neshev, Schiek, Kivshar, Pertsch, PRL 105, 233905 (2010)

Spontaneous Parametric Down-Conversion

Spontaneous Parametric Down-Conversion (SPDC) is a common source of entangled photon pairs

Energy conservation
$\omega_{\text{PUMP}} = \omega_s + \omega_i$

Momentum conservation
$k_p = k_s + k_i$

Pump
Nonlinear $\chi^{(2)}$ crystal
s (signal) ω_s, k_s
i (idler) ω_i, k_i
Correlations of photon pairs at the output of the waveguide array

Quantum walks of photon pairs

Correlated photon pairs $a_1^\dagger a_1^\dagger|0\rangle$ at an input lead to output with no classical analogy

Bunching & anti-bunching: signal & idler photons primarily propagate in the same or opposite directions

Simultaneous photon-pair generation and quantum walks in waveguide array with quadratic nonlinearity

Quantum statistics governed by:
• quantum walks - coupling to the right and left
• photon correlations in a pair
• probabilities to generate the photon pairs at different spatial locations

– Pump stays in input waveguide
– Degenerate type-I SPDC

Solntsev, Sukhorukov, Neshev, Kivshar (2011) submitted
Photon pair correlations for pump in one waveguide

Pump in one waveguide

Phase-mismatch is equal to 0 when \(k_p^+ \pm k_r^+ \approx \pm \pi \) for \(\Delta \beta^0 = 0 \).

In real space **bunching** and **anti-bunching** are achieved.

Phase mismatch can be controlled by pump wavelength or temperature.

With increase of single waveguide phase mismatch real-space output becomes classical.

Solntsev, Sukhorukov, Neshev, Kivshar (2011) submitted

Photon pair correlations for pump in two waveguides

Pump in two neighbouring waveguides with phase shift \(P \)

In real space bunching and anti-bunching switching can be controlled by phase shift \(P \) between pump waves.

In waveguides \(n = (0,1) \)

Solntsev, Sukhorukov, Neshev, Kivshar (2011) submitted
Fundamental effects and future applications of quadratic nonlinear waveguide arrays

• New type of phase transition associated with second-harmonic generation due to an interplay of localization and synchronisation
 Theory: Sukhorukov, Kivshar, Bang, Soukoulis, PRE 63, 016615 (2001); Experiment in LiNbO$_3$: Setzpfandt et al., PRL 105, 233905 (2010)

• Novel integrated device incorporating spontaneous parametric down-conversion and quantum walks
 – photon pair source with strongly nonclassical correlations with simple classical control of photon statistics by shaping the input pump
 Solntsev, Sukhorukov, Neshev, Kivshar (2011) submitted